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In a recent Letter �N. D. Denkov et al., Phys. Rev. Lett. 100, 138301 �2008�� we calculated theoretically the
macroscopic viscous stress of steadily sheared foam or emulsion from the energy dissipated inside the transient
planar films, formed between neighboring bubbles or drops in the shear flow. The model predicts that the
viscous stress in these systems should be proportional to Ca1/2, where Ca is a capillary number and n=1 /2 is
the power-law index. In the current paper we explain our model in detail and develop it further in several
aspects: First, we extend the model to account for the effects of viscous friction in the curved meniscus regions,
surrounding the planar films, on the dynamics of film formation and on the total viscous stress. Second, we
consider the effects of surface forces �electrostatic, van der Waals, etc.� acting between the surfaces of the
neighboring bubbles or drops and show that these forces could be important in emulsions, due to the relatively
small thickness of emulsion films �often comparable to the range of action of surface forces�. In contrast, the
surface forces are usually negligible in steadily sheared foams, because the dynamic foam films are thicker than
the extent of surface forces, except for foams containing micrometer-sized bubbles and/or at very low shear
rates. Third, additional consideration is made for bubbles or drops exhibiting high surface viscosity, for which
we demonstrate an additional contribution to the macroscopic viscous stress, created by the surface dissipation
of energy. The new upgraded model predicts that the energy dissipation at the bubble or drop surface leads to
power-law index n�1 /2, whereas the contribution of the surface forces leads to n�1 /2, which explains the
rich variety of foam or emulsion behaviors observed upon steady shear. Various comparisons are made between
model predictions and experimental results for both foams and emulsions, and very good agreement is found.
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I. INTRODUCTION

Foams and concentrated emulsions, in which the volume
fraction of dispersed phase, �, is higher than the volume
fraction of closely packed spheres, �CP, exhibit complex
elastoviscoplastic rheological behavior, involving nontrivial
jamming or unjamming transitions and bubble or drop defor-
mations, which are controlled by the interplay of viscous
drag and capillary pressure �1–21�. Partially, this complex
behavior is related to the fact that relatively thin liquid films
are formed between the dispersed entities �bubbles or drops�,
due to their confinement in the dispersion. During foam and
emulsion flow, high local shear rates are created in these
films �compared to the macroscopic shear rate of the disper-
sion�, which results in relatively high viscous dissipation of
energy. The bubble or drop deformability leads to nonlinear
dependences of the film thickness and of the resulting flow
characteristics of foams and emulsions on the applied shear
stress, and these dependences are still poorly understood.

The rheological properties of foams and concentrated
emulsions, subject to steady shear deformation, are usually
described by the Herschel-Bulkley model, which includes
three parameters—yield stress �0, power-law index n, and
consistency k �1,4–6,9,11� as follows:

� = �0 + �V��̇� = �0 + k�̇n. �1�

Here �̇ is the applied shear rate, � is total shear stress, and
�V��̇� is the rate-depending part of this stress. The depen-
dence of the yield stress, �0, on foam or emulsion character-
istics, such as bubble or drop size, volume fraction of the

dispersed phase, and interfacial tension, were studied in de-
tail both theoretically and experimentally �1–4,6,9–11� and
will not be considered here.

Recently, several research groups demonstrated that, close
to the yielding transition, the shear rate inside sheared foams
and emulsions could be nonhomogenous with the coexist-
ence of jammed and unjammed zones �11,13,20,22–25�.
Even in these cases, it was found that the rate-dependent
fraction of the shear stress, �V��̇�, could be described by a
power-law function, similar to the second term in the right-
hand-side of Eq. �1�.

The focus of the present study is on this term, �V��̇�,
which is much less understood in comparison with �0. In
many studies, the experimental results were described by
empirical power-law fits with n�1 /2 �1,4,18,25–29�. How-
ever, in other studies different power-law indexes were re-
ported, without a clear understanding of how the values of n
and k depend on the specific system parameters �9,26,30,31�.
Several theoretical models were proposed in literature to de-
scribe the viscous friction in steadily sheared foams and con-
centrated emulsions �1,5,8,32–35�, however, neither of these
models succeeded to encompass the results obtained in the
various experimental studies.

In addition, recent rheological experiments with foams
�26� and observations of the dynamics of single Plateau bor-
ders �36� revealed a very strong effect of the type of surfac-
tant used. For example, power-law indexes n�0.40 and n
�0.25 were reported for foams, which were stabilized by
surfactants exhibiting low and high surface modulus, respec-
tively, with the viscous stress being much higher for the sec-
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ond type of surfactants �26�. These results demonstrated that
the surface dissipation of energy could be significant for sys-
tems characterized by high surface viscosity of the bubbles
or drops, but no theoretical model of this effect has been
proposed so far.

In a recent Letter �37�, we developed a theoretical model
of the viscous friction in steadily sheared, concentrated
foams and emulsions with ���CP. The basic assumption in
this model was that the viscous dissipation occurs predomi-
nantly in the thin films, formed between the neighboring
drops and bubbles, which pass by each other dragged by the
flow �see Fig. 1�. The processes of film formation and thin-
ning were explicitly considered and used to calculate the
energy dissipation inside the films. This model predicts
power-law index n�1 /2 and allows one to calculate the
consistency k, which is in very good agreement with experi-
mental data obtained by different groups �4,26,38�. However,
the model could not explain the experimental results, in
which power-law indexes n�1 /2 are determined.

The main purpose of the current paper is to extend further
the model from Ref. �37�, taking into account several addi-
tional effects, which might explain the reach variety of foam
or emulsion behaviors observed upon steady shear. As shown
below, the upgraded model predicts that the energy dissipa-
tion at the bubble or drop surface could explain the results
with n�1 /2, whereas the surface forces acting in the foam/
emulsion films could explain the results with n�1 /2. Note
that we are interested mostly in the shear rates characterizing
the foam or emulsion transportation �ca. 0.5–200 s−1�.
Therefore, we assume that the bubble size and volume frac-
tion are known, and do not consider the processes of Ostwald

ripening and water drainage, which might be important at
longer time scales �11,39–47�.

The paper is structured as follows: In Sec. II we describe
the various assumptions and consecutive steps made in the
development of the original model from Ref. �37�. In addi-
tion, in Sec. II C we upgrade the model by accounting for the
possible contribution of the surface forces acting between the
neighboring drops or bubbles, and analyze in which cases
this contribution is important. In Sec. III we consider the
possible effects of the viscous friction in the curved menis-
cus regions surrounding the films. In Sec. IV we present the
results from numerical calculations. In Sec. V we compare
model predictions with experimental results at a negligible
effect of surface dissipation. The latter effect is considered in
Sec. VI and, finally, we summarize the conclusions in Sec.
VII.

II. THEORETICAL MODEL

For brevity, in the model formulation we discuss explic-
itly only bubbles in steadily sheared foams. However, the
model is equally applicable to concentrated emulsions, and
its predictions are compared in Sec. V with experimental
results for both foams and emulsions.

A. Main characteristics of deformed bubbles in static foam

Let us consider first an idealized static foam, consisting of
monodisperse bubbles with given volume VB= �4 /3��R0

3, and
volume fraction �, which are arranged in a regular fcc lat-
tice. The geometrical characteristics of the deformed bubbles
in such regular foam could be estimated as follows �see Fig.
1�.

The average distance between the geometrical centers of
two neighboring bubbles, lS, is proportional to the bubble
radius R0, and could be found from geometrical relations,
after assuming a certain model shape of the bubbles. For
example, assuming that the bubbles have the shape of rhom-
bic dodecahedrons, one can use the fact that the height of the
rhombic pyramid, formed between the dodecahedron center
and one of the rhombs on the dodecahedron wall, is equal to
lS /2. The respective geometrical calculations lead to lS
�1.812R0 in the limit of a dry foam ��→1�. On the other
hand, the decrease of air volume fraction �, at fixed relative
arrangement of the bubbles, corresponds to an increase of the
center-to-center distance by a factor of �1/3, which means
that for arbitrary ���CP,

lS �
1.812

�1/3 R0 �rhomboic dodecahedron� . �2�

For other model bubble shapes, the functional dependence of
lS on R0 and � is the same, whereas the numerical factor
would differ slightly �within a few percent�.

For the following consideration, it is convenient to intro-
duce an effective radius of curvature of the deformed
bubbles, Reff

2 =RFS
2 + lS

2 /4, which is defined as the radius of a
spherical surface with just one planar film �instead of the 12
films of the packed rhombic dodecahedra� that would exhibit
the same ratio RFS / lS as the deformed polyhedral bubbles in
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FIG. 1. �Color online� �a� Illustration of the process of bubble-
bubble friction with consecutive images of bubbles passing along
each other in sheared foam. The images are taken by side observa-
tion of foam, sheared between the parallel plates of the rheometer.
�b� Schematic presentation of the relative motion of the neighboring
planes of bubbles in sheared foam �with relative velocity u�, and of
the process of film formation and the disappearance between two
bubbles, sliding along each other. The relative position of the
bubbles is characterized by the distance l�t� or by the angle ��t�,
whereas lm denotes the distance of closest approach of the bubble
centers at �=90° �upper line, side view; bottom line, projection
onto the plane of bubbles�.
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the static foam, Fig. 2�a�. Here RFS is the radius of the foam
film between two neighboring bubbles in the static foam. The
advantage of using Reff, when considering the dynamic col-
lisions between neighboring bubbles in sheared foam, is that
one can replace the actual polyhedral bubbles by “imagi-
nary” spherical bubbles with radius of curvature Reff, which
have just one planar film in the zone of bubble-bubble con-
tact under consideration. To estimate Reff we have assumed
that the film thickness h� lS—this assumption is justified for
all systems of interest, and is used consistently throughout
the consideration below.

The scaled film radius in the static foam, RFS /R0, could be
determined as a function of air volume fraction,by using an
expression derived by Princen �1� as follows:

SF��� = S1f���/�2/3, �3�

where SF��� is the area of the bubble surface occupied by
films; S1�1.1053S0 is the area of the deformed bubble at
�→1; S0=4�R0

2 is the surface area of nondeformed
bubbles; and f��� is the fraction of wall surface confining
the foam that is contacted by the flattened bubble surface
�i.e., the fraction of wall occupied by wetting films�. By defi-
nition, SF= p�RFS

2 , where p is the number of films per bubble
in the static foam �p=12 for the assumed fcc structure�,
which leads to

RFS � 0.607�f���/�2/3�1/2R0 �rhomboic dodecahedron� .

�4�

For determining the dependence f��� we used the relation
�1,48–50�

f��� = POSM���/PC��� , �5�

where POSM is the osmotic pressure of the concentrated
emulsion or foam and PC is the capillary pressure of the
respective deformed drops or bubbles. On its turn, PC could

be expressed from another rigorous thermodynamic relation
�1,48–50� as follows:

PC��� =
	

R0
� P̃OSM���

�
+ 2

S���
S0

� , �6�

where 	 is interfacial tension and P̃OSM= POSM / �	 /R0� is
dimensionless osmotic pressure. For typical polydisperse
emulsion, Princen and Kiss �49� found that the following
empirical functions could describe the experimental data for
osmotic pressure:

P̃OSM��� = 0.237�� − 0.715

1 − �
� − 0.068 ln� 0.285

1 − �
�

− 0.098, 0.715 � � � 0.90, �7a�

P̃OSM��� =
0.008 19�2

�1 − 0.9639��2 , 0.90 � � � 0.99. �7b�

In Eq. �6�, S��� is the total surface area of the deformed
bubble or drop, which can be found by the relation S /S0

=1+��CR

� �P̃OSM /3�2�d�. Explicit expressions for S��� cor-
responding to Princen’s functions are given by Eqs. �49� and
�50� in Ref. �1�.

For monodisperse foams of equally sized and regularly
arranged bubbles, Hoehler et al. �51� proposed the following
empirical relation to describe their experimental data:

P̃OSM��� = 7.3
�� − 0.74�2

�1 − ��1/2 , 0.74 � � � 0.99. �8a�

The integration of Eq. �8a� with respect to � leads to the
following expression for S���, which corresponds to the

function for P̃OSM, introduced by Hoehler et al. �51�:

S���/S0 = 1.097 – 2.433�2 + 0.5476/��	1 − �

+ 5.869 arctanh	1 − �, 0.74 � � � 0.99.

�8b�

Note that Eq. �8a� gives very similar numerical results to
those calculated by the model of Kraynik and Reinelt �see
Figs. 14 and 15 in Ref. �1��. Therefore, the results presented
below, which are based on Eqs. �8a� and �8b�, are represen-

tative for the models of P̃OSM both in Ref. �51� and by
Kraynik and Reinelt.

Concluding, for given R0 and � we calculate P̃OSM and
S��� from Eqs. �7� and �8�, which are afterwards used to
determine PC, f���, and RFS from Eqs. �4�–�6�. The value of
lS is determined from Eq. �2�.

B. Geometrical characteristics of bubbles
in steadily sheared foam

Now we consider two neighboring bubbles sliding along
each other in sheared foam �see Fig. 1�. The bubbles are
placed in two neighboring planes of the assumed fcc struc-
ture and these planes move, with respect to each other, as a
result of applied shear stress. The coordinate system is at-
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FIG. 2. Schematic presentation: �a� Two neighboring bubbles in
static foam: Reff is the effective bubble radius, lS is the distance
between bubble geometrical centers, hEQ is equilibrium film thick-
ness, and RFS is film radius. �b� Sliding bubbles in sheared foam: h
is film thickness, RF is film radius, l is center-to-center distance, �
is running angle �see Fig. 1�, and all these are functions of time. The
coordinate system Oxy used to describe the bubble relative position
is fixed to the center of the “immobile” upper bubble, whereas the
center of the moving coordinate system O1r
z, used in the descrip-
tion of film thinning, is located in the center of the planar film
between the bubbles.
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tached to the geometrical center of one of the bubbles,
whereas the other bubble is assumed to move with constant
velocity u along the x axis. The angle formed between the x
axis and the line connecting bubble centers is denoted by
��t� �see Fig. 1�.

The relative position of the bubbles can be described by
the distance between their geometrical centers as follows:

l�t� = �lm
2 + �ut − x0�2�1/2, lm = lS

	3/2, �9�

where lm is the minimal distance between the geometrical
centers of the bubbles, realized at �=� /2 �see Fig. 1�. The
coordinate x0= �l0

2− lm
2 �1/2 in Eq. �9� corresponds to the mo-

ment of film formation between the bubbles and l0 is the
respective center-to-center distance. The dependence ��t�
can also be found from Eq. �9� by using the relation ��t�
=arcsin�lm / l�t��.

The radius of the planar film between the bubbles, RF�t�,
is found from geometrical consideration by assuming that the
radius of curvature of the imaginary “single-film bubble,”
Reff, is the same for the static and sheared foams �see Fig. 2�.

RF�t� = �REFF
2 − l�t�2/4�1/2. �10�

In this way, from Eqs. �9� and �10�, we can determine the
relative position of the bubbles l�t�, the respective angle ��t�,
and the film radius RF�t�, as a function of time, with t=0
being the moment of film formation. To complete the de-
scription of bubble dynamics, we should define the moment
of film formation, t=0, and determine the dependence of film
thickness on time, h�t�. The latter two tasks are solved in the
following Secs. II C and II D.

C. Description of the liquid flow in the foam film

For a description of liquid flow in the planar film formed
between two sliding bubbles, we use the lubrication equa-
tion. Here the foam film is considered in a cylindrical
r
z-coordinate system, whose origin is located in the film
center and whose z axis is perpendicular to the film plane
�see Fig. 2�b��. In this coordinate system, the lubrication
equation reads

�P

�r
= �

�2Vr�r,
,z,t�
�z2 , r component, �11a�

�P

r � 

= �

�2V
�r,
,z,t�
�z2 , 
 component, �11b�

�P

�z
= 0, z component, �11c�

where � is the liquid viscosity and P�r ,
 , t� is the local
pressure in the liquid layer between bubbles. In lubrication
approximation, P does not depend on z, whereas the radial
and angular components of the fluid velocity Vr�r ,
 ,z , t� and
V
�r ,
 ,z , t� are functions of all three space coordinates and
time. Note that in the lubrication approximation Vz is much
smaller in magnitude than Vr and V
 and, for this reason, it is
not considered explicitly, except as a boundary condition for
the continuity equation, Eq. �15�.

In the following consideration, lubrication equations
�11a�–�11c� are solved under the assumption that bubble
�drop� surfaces are tangentially immobile, i.e., with a nonslip
boundary condition for the liquid at the bubble �drop� sur-
face. This tangential immobility of the surfaces might be due
to high viscosity of the fluid inside emulsion drops �in the
case of sheared emulsion� and/or to high Marangoni stress on
the drop or bubble surface, created by adsorbed surfactant or
polymer molecules �52–58�. The respective boundary condi-
tions for the fluid velocity at the surfaces of the planar film
read as follows:

Vr�r,
,z = � h/2,t� = 
 �u/2�sin ��t�cos 
 , �12a�

V
�r,
,z = � h/2,t� = � �u/2�sin ��t�sin 
 , �12b�

where h�t� is the instantaneous film thickness, and u sin ��t�
is the projection of the relative bubble velocity in the plane
of the film.

The integration of Eqs. �11a� and �11b�, along with
boundary conditions �12a� and �12b�, leads to

Vr�r,
,z,t� =
1

2�

�P

�r
�z2 −

h2

4
� − �uz/h�sin ��t�cos 
 ,

�13a�

V
�r,
,z,t� =
1

2�r

�P

�

�z2 −

h2

4
� + �uz/h�sin ��t�sin 
 .

�13b�

To determine the dynamic pressure inside the film, we use
the continuity equation and the boundary conditions for the
normal component of velocity Vz as follows:

1

r

��rVr�
�r

+
�V


r � 

+

�Vz

�z
= 0, �14�

Vz�z = � h/2� = �
1

2

dh

dt
. �15�

The integration of Eq. �14� from z=−h /2 to z=h /2 leads to
the following differential equation for P�r ,
�:

r2�2P

�r2 + r
�P

�r
+

�2P

�
2 = �12�r2

h3 �dh

dt
. �16�

Equation �16� is solved under boundary condition

P�r = RF� = P0, �17�

which implies that the pressure of the liquid at the film pe-
riphery is not affected by the viscous friction in the film. By
following the standard approach, one can solve Eq. �16� to
obtain the following expression:

P�r� = P0 +
3�

h3

dh

dt
�r2 − RF

2� , �18�

which shows that the dynamic pressure in the film does not
depend on the angular coordinate 
. The latter result is a
direct consequence of the assumed boundary condition, Eq.
�17�, which is independent of 
.
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The introduction of P�r� from Eq. �18� into Eqs. �13a� and
�13b� leads to

Vr�r,
,z,t� =
3r

h3

dh

dt
�z2 −

h2

4
� − �uz/h�sin ��t�cos 
 ,

�19a�

V
�
,z,t� = �uz/h�sin ��t�sin 
 . �19b�

Note that the V
 component of the fluid velocity does not
depend on the radial r coordinate.

Next, to determine the velocity of film thinning, dh /dt,
we use the normal force balance �54� as follows:

2�

0

RF

Pd�r�rdr = �RF
2�PC − ��h��, �20�

which implies that the dynamic pressure inside the film,
Pd�r�= �P�r�− P0�, acting on the film surface from the film
interior, is counterbalanced by the difference between the
capillary pressure of the bubble, PC, and the disjoining pres-
sure, ��h�. As usual, ��h� accounts for the action of the
surface forces �per unit area of the film�, which could include
electrostatic, van der Waals, steric, and other types of force
�55,59,60�. Introducing Eq. �18� into Eq. �20� and perform-
ing the integration, we obtain the well-known Stefan-
Reynolds equation for the velocity of film thinning �52,54�
as follows:

dh

dt
= −

2�PC − ��h��h3

3�RF
2 . �21�

Introducing Eq. �21� into Eq. �19a�, we derive the following
expression for the radial component of the fluid velocity in
the film, Vr:

Vr�r,
,z,t� = −
2r

�RF
2 �PC − ��h���z2 −

h2

4
�

− �uz/h�sin ��t�cos 
 . �22�

Thus, we derived expressions for the two components of the
fluid velocity in the film, Eqs. �19b� and �22�, which contain
the unknown function h�t�. To determine the dependence h�t�
we integrate numerically Eq. �21� with the initial condition
h�t=0�=h0 as follows:



h0

h dh

�PC − ��h��h3 = −
2

3�



0

t dt

�RF�t��2 . �23�

Equation �23� is used in the numerical calculations discussed
in Sec. IV B below. The explicit expression for the initial
film thickness h0 is given by Eq. �29� below.

If one neglects the surface forces in Eq. �23�, assuming
��h�� PC, and using Eq. �10� for the dependence RF�t�, one
obtains the following explicit expression for the film
thickness h�t�:

1

h2 =
1

h0
2 +

16PC

3�

1

u	4REFF
2 − lm

2 �arctanh� 	l0
2 − lm

2

	4REFF
2 − lm

2 �
+ arctanh�ut − 	l0

2 − lm
2

	4REFF
2 − lm

2 ��
at negligible contribution of ��h� . �24�

Therefore, at negligible ��h�, one can introduce h�t� from
Eq. �24� into Eqs. �19b� and �22� to derive explicit expres-
sions for Vr and V
.

D. Formation of the foam film between colliding bubbles

To complete our calculation scheme, we should specify
the initial moment of formation of the planar film between
the colliding bubbles and, thus, to determine the quantities
h0, RF0, l0, etc. For this purpose, the hydrodynamic approach
of Ivanov and co-authors is applied �56–58�. To illustrate the
physical meaning of the main steps in this approach and to
explain the modifications needed to describe our system, we
discuss first the case of negligible contribution of surface
forces, ��h�� PC.

Ivanov et al. �56,58� showed theoretically that if two
bubbles collide along their centerline under the action of an
external force, F, the bubble surfaces flatten and a planar
film forms when the dynamic pressure in the center of the
contact zone, Pd�r=0�, becomes equal to the bubble capillary
pressure PC. Detailed hydrodynamic calculations of Pd�r�,
based on the lubrication model for the friction between the
surfaces of the colliding bubbles �56�, show that the initial
thickness of the formed film depends only on the driving
force F, and on the interfacial tension of the bubbles or
drops, 	 as follows:

h0 =
F

2�	
. �25�

In our system, the bubbles approach each other at given rela-
tive velocity u, which is determined by the shear rate in the
foam. To adapt the approach from Ref. �56� to our case, we
use the fact that the Reynolds number in the gap between
bubbles is low, Reh
uh /��1, so that the inertial and con-
vective terms in the Navier-Stokes equation are negligible
and the flow in the gap can be considered as quasisteady
�similar assumptions are used to derive the Stefan-Reynolds
equation, Eq. �21��. Thus we can assume that the external
force in Eq. �25� is equal �just before the film formation� to
the hydrodynamic resistance force between the nondeformed
bubbles, which in turn can be estimated from Taylor’s
formula �55�, as follows:

F = 3��RN
2 uz/2h . �26�

Here, RN is the radius of curvature of the approaching bubble
surfaces in the zone of their contact, and uz�t�=u cos ��t� is
the velocity component along the line connecting bubble
centers �see Fig. 2�b��. It is reasonable to assume that the
mean curvature of the colliding bubbles in the contact zone
is approximately equal to the mean curvature of the nodes in
the static foam, which can be expressed through the capillary

THEORETICAL MODEL OF VISCOUS FRICTION INSIDE … PHYSICAL REVIEW E 78, 011405 �2008�

011405-5



pressure of the deformed bubbles, PC���. In other words, we
assume RN�2	 / PC and use Eq. �6� to calculate PC.

Combining Eqs. �25� and �26�, we derive the following
expression for the initial film thickness in sheared foam at a
negligible contribution of the surface forces:

h0 � ��3/4�cos �0ũ�1/2RN, �27�

where �0=��t=0� is the angle in the moment of film forma-
tion and ũ= ��u /	� is the dimensionless relative velocity of
two neighboring planes of bubbles in the sheared foam. Note
that ũ is different from the conventional capillary number for
foam and emulsion shear, Ca=��̇R0 /	 �see Sec. II E below�.

Following the approach from Ref. �56�, we can also esti-
mate the initial radius of the formed planar film, RF0. For this
purpose one assumes that immediately after film formation,
the pushing force F becomes equal to the hydrodynamic
force resisting the planar film thinning �thus neglecting the
friction in the meniscus region surrounding the film in com-
parison with the friction inside the film; see Sec. III for fur-
ther discussion�. On its turn, this hydrodynamic resistance
force in the film can be estimated by multiplying the average
hydrodynamic pressure in the film �equal to PC� by the film
area F� PC��RF0

2 � �54�. Thus, by using Eqs. �25� and �26�
one derives the following equation for the initial film radius
�56�:

RF0 = �h0RN�1/2. �28�

Next, we determine the initial coordinate of the moving
bubble in the moment of film formation, l0, by setting RF
=RF0 from Eq. �28� into Eq. �10�, thus completing the set of
equations needed to describe the film dynamics at negligible
��h�.

In a recent paper �58�, Ivanov and co-authors extended
their approach to account for the effect of surface forces on
h0. In this case, the pressure balance inside the gap between
the colliding bubbles �including the disjoining pressure�
leads to the following transcendental equation for the initial
film thickness �adapted to our case from Eq. �16� in �58��:

h0 =
RN��3/4�cos �0ũ�1/2

�1 − ��h0�/PC�
, �29�

where ��h0� is the disjoining pressure of a film with thick-
ness h0. As seen from Eq. �29�, attractive surface forces �e.g.,
van der Waals attraction�, which correspond to negative val-
ues of ��h�, lead to smaller initial film thickness h0, whereas
repulsive surface forces �e.g., electrostatic repulsion� lead to
larger h0, as compared to that for negligible surface forces.
For a detailed analysis of these relations, see Ref. �58�.

Following the approach from Ref. �54�, one can show that
the initial film radius RF0, at significant disjoining pressure,
can be estimated by an expression which is derived after
substituting h0 from Eq. �29� into Eq. �28� as follows:

RF0 =
RN��3/4�cos �0ũ�1/4

�1 − ��h0�/PC�1/2 . �30�

As in the case of negligible ��h�, the bubble coordinate in
the moment of film formation l0 is found by setting RF
=RF0 in Eq. �10�.

E. Energy of viscous dissipation inside the foam film
and average viscous stress in sheared foam

In this section we calculate first the energy dissipated in
one foam film �between two bubbles� from the moment of
film formation to the moment of its disappearance. After-
wards, this energy is used to calculate the average viscous
stress in the foam.

The rate of energy dissipation inside the film is calculated
by the equation �61�

−
dEDF

dt
= �


0

2� 

0

RF 

−h/2

h/2 ��r
�

�r
�V


r
� +

1

r

�Vr

�

�2

+ � �V


�z
�2

+ � �Vr

�z
�2�rdzdrd
 , �31�

where the subscript “DF” means “energy dissipation inside
the film.” After substituting the partial derivatives of Vr and
V
 from Eqs. �22� and �19b� into Eq. �31� and integrating,
one obtains

−
dEDF

dt
= ���uRF sin ��2/h +

2�

3�
�PC − ��h��2h3. �32�

The first term in the right-hand side of Eq. �32� accounts for
the viscous dissipation resulting from the sliding of bubbles
with respect to each other �due to foam shear�, whereas the
second term accounts for the viscous dissipation resulting
from film thinning. The numerical calculations showed that,
typically, the second term is much smaller than the first one
and could be neglected in Eq. �32�.

To determine the total energy EDF, which is dissipated
inside one film during its existence, we integrate Eq. �32�
over the contact time tC of the two bubbles as follows:

EDF = − 

0

tc ����uRF sin ��2/h +
2�

3�
�PC − ��h��2h3�dt,

�33�

where RF, �, h, and � are functions of t.
The contact time tC denotes the period of film existence.

The initial moment of film formation t=0 is defined as ex-
plained in Sec. II D. For the moment of film disappearance
we assume that RF acquires a sufficiently small value, e.g.,
�0.1RF0. The numerical calculations showed that the final
results for the dissipated energy and viscous friction are
practically independent of the particular choice of the final
film radius RFE if the latter is chosen sufficiently small �the
choice RFE=0 is inconvenient for numerical calculations, be-
cause some of the integrated functions diverge, whereas the
final integrals are convergent�.

From EDF we can calculate the time-averaged energy dis-

sipation rate per unit foam volume �Ė�, which is equal to the
macroscopic viscous stress �VF, multiplied by the shear rate
�̇. The shear rate �̇=u /m and the conventional capillary
number Ca
���̇R0 /	�= ũR0 /m�0.676ũ�1/3 are propor-
tional to the relative velocity of the bubble planes, u; here
m���= �2 /3�1/2lS�1.479R0 /�1/3 is the distance between the
planes, Fig. 1, and ũ=�u /	 is the dimensionless velocity. To

determine �Ė�, we consider the motion of the bubble plane as
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a sequence of equivalent steps with length lS. During one
such step, the six contacts of an arbitrarily chosen “central”
bubble with its neighbors in the “top” and “bottom” planes,
undergo partial cycles of type “film formation-thinning dis-
appearance,” like those expressed by Eq. �33�. Geometrical
consideration shows that these partial cycles could be
summed up to four full friction cycles. Thus, for the viscous
stress of the foam one derives

�VF�̇ = �Ė� =
1

2
�4EDF/�VB/���lS/u�� = 2EDF�u/VBlS,

�34�

where the multiplier 1/2 accounts for the sharing of the dis-
sipated energy inside one film by two neighboring bubbles,
VB /� is the volume occupied by one bubble in the foam, and
lS /u is the duration of one step with length lS. The subscript
“VF” reminds one that only the viscous friction inside the
foam films is considered here.

For the numerical calculations, it is convenient to intro-

duce dimensionless quantities ẼDF
EDF / �R0
2	ũ1/2�, �F

=RF /R0, R̃N=RN /R0, t̃= tu /R0, �̃=��h� / PC, l̃m= lm /R0,

R̃EFF=REFF /R0, and �=h /R0 �note that, for convenience, dif-
ferent scaling was used for h in Ref. �37��. The dimension-
less dissipated energy, viscous stress, and effective viscosity
are thus presented as

ẼDF = − 

0

t̃C ���sin ��t̃��2ũ1/2 ��F�t̃��2

��t̃�

+
8�

3

1

ũ3/2 �1 − �̃�2 ���t̃��3

R̃N
2 �dt̃ , �35�

�̃VF = �VF/�	/R0� = 0.39ũ1/2�ẼDF � 0.474Ca1/2�5/6ẼDF,

�36�

�̃EF = �EF/� = �VF/��̇ = �̃VF/Ca � 0.474�5/6Ca−1/2ẼDF.

�37�

Equations �36� and �37� show that the viscous stress is ap-
proximately proportional to Ca1/2, whereas the effective vis-
cosity is proportional to Ca−1/2, as observed experimentally
by Princen and Kiss �1,4�. This scaling is ultimately related
to the dependence h�Ca1/2, predicted by the Stefan-
Reynolds equation at negligible ��h� �see Eqs. �21� and
�24��.

Note that ẼDF is a strong function of bubble volume frac-
tion �, and therefore, the dependences of �̃VF and �̃EF on �
are discussed after presenting the numerical results for

ẼDF��� in Sec. IV. Equations �36� and �37� are applicable to
both emulsions and foams, provided that the surfaces of the
drops and bubbles are tangentially immobile and the pre-
dominant energy dissipation occurs in the foam films �see
Secs. III, IV B, and V below for other possibilities�.

III. VISCOUS DISSIPATION INSIDE THE MENISCUS
REGION

One relevant question is: how significant could the vis-
cous friction be in the curved meniscus regions, surrounding
the films, for the processes under consideration. Our theoret-
ical analysis showed that the friction in the meniscus region
affects the system in two interrelated ways: �1� additional
energy is dissipated in the meniscus region around the film,
and �2� the film thinning is affected by this additional fric-
tion, so that the dependence h�t� is different. In the current
section we upgrade our model from Sec. II to account for
these additional effects.

For simplicity, we consider the meniscus region as part of
a spherical surface with radius of curvature RN�2	 / PC.
Close to the film, this spherical surface could be approxi-
mated by a parabola, which leads to the following descrip-
tion of the liquid layer thickness in the film and its close
neighborhood:

H�r,t� = h�t� +
�r − RF�t��2

RN
, r � RF,

H�r,t� = h�t�, r � RF, �38�

where RF�t� is the film radius �see Fig. 3�.
For the determination of the dynamic pressure in the liq-

uid layer between bubbles �including the meniscus region�
we should modify the equations in Sec. II C, by accounting
for the dependence of layer thickness on radial coordinate,
H�r�. The boundary condition for the normal velocity com-
ponent VZ, in this case is

Vz�z = � H�r,t�/2� = �
1

2

�H�r,t�
�t

. �39�

Integration of Eq. �14� from z=−H /2 to z=H /2, along with
boundary condition, Eq. �39�, leads to the following equation
for P�r , t�:

�P

�r
=

12�

�H�r,t��3� r

2

dh

dt
−

�r − RF�2�2r + RF�
3rRN

dRF

dt
� . �40�

Equation �40� is solved under the boundary condition �an
analog of Eq. �17�� as follows:

P�r = RF + RN� = P0, �41�

which implies that the pressure in the liquid layer far away
from the planar film is not affected by the viscous friction
�this assumption can be justified, e.g., by the lubrication

z

r
h

H r( )

RF RN+RF

FIG. 3. Schematic presentation of transient foam film 0�r
�RF, with the adjacent meniscus region RF�r�RN+RF.
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equation, Eq. �11��. By following the standard approach, one
can solve Eq. �40� and derive the following expressions:

P�r� = P0 + 6�
dh

dt �
RF

r rdr

�H�r,t��3 − 

RF

RF+RN rdr

�H�r,t��3�
−

4�

RN

dRF

dt �
RF

r �r − RF�2�2r + RF�dr

r�H�r,t��3

− 

RF

RF+RN �r − RF�2�2r + RF�dr

r�H�r,t��3 � at r � RF,

�42a�

P�r� = P0 +
3�

h3 �r2 − RF
2�

dh

dt
− 6�

dh

dt



RF

RF+RN rdr

�H�r,t��3

−
4�

RN

dRF

dt



RF

RF+RN �r − RF�2�2r + RF�dr

r�H�r,t��3 at r � RF,

�42b�

which is used in the normal force balance, Eq. �44�.
The introduction of �P /�r from Eq. �40� into Eq. �13a�

leads to

Vr�r,
,z,t� =
6

�H�r,t��3� r

2

dh

dt
−

�r − RF�2�2r + RF�
3rRN

dRF

dt
�

��z2 −
�H�r,t��2

4
� −

uz sin ��t�cos 


H�r,t�
,

�43a�

V
�r,
,z,t� =
uz

H�r,t�
sin ��t�sin 
 . �43b�

Note that the angular V
 component of velocity depends on
the radial r coordinate when the friction inside the Plateau
border �PB� is taken into account.

Next, to determine the velocity of film thinning, dh /dt,
we use the normal force balance, expressed in the form

2�

0

RF+RN

rPd�r�dr = �RF
2�PC − ��h��, �44�

where, for simplicity, surface forces in the curved meniscus
region, ��H�h�, are neglected �see Refs. �62,63� for discus-
sion and calculations of this effect, which could be important
for emulsion drops�. In the calculations, we solve numeri-
cally Eq. �44� to determine the velocity of film thinning, h�t�,
which is afterwards introduced in the expressions for Vr and
V
, Eqs. �43a� and �43b�, to determine the rate of energy
dissipation and the viscous stress.

The rate of energy dissipation in the meniscus region is
given by the expression

−
dEDM

dt
= �


0

2� 

RF

RF+RN 

−H/2

H/2 ��r
�

�r
�V


r
� +

1

r

�Vr

�

�2

+ � �V


�z
�2

+ � �Vr

�z
�2�rdzdrd
 , �45�

where the subscript “DM” indicates that the energy dissipa-
tion inside the meniscus region �which can be considered as
part of the plateau border� is considered. Note that the rate of
energy dissipation inside the planar film is described again
by Eq. �32�, but keeping in mind that the dependence h�t� is
affected by the friction in the meniscus region and should be
found by solving Eq. �44�. After substituting the partial de-
rivatives of Vr and V
 from Eqs. �43a� and �43b� into Eq.
�45� one obtains

−
dEDM

dt
= 2����u sin ��2�


RF

RF+RN r

H�r,t�

��1 +
�r − RF�2

6RN
2 �dr� + 12


RF

RF+RN 1

r�H�r,t��3

�� r2

2

dh

dt
−

�r − RF�2�2r + RF�
3RN

dRF

dt �2

dr� . �46�

The first term in the right-hand side of Eq. �46� accounts for
the viscous dissipation resulting from the sliding of the
bubbles with respect to each other �due to foam shear�,
whereas the second term accounts for the viscous dissipation
resulting from thinning of the meniscus region.

The total viscous stress of the foam is given by Eq. �34�,
after substituting EDF by the sum �EDF+EDM� obtained after
integration of Eqs. �33� and �41�, respectively, over the con-
tact time of the bubbles, tC.

IV. NUMERICAL RESULTS

A. Negligible friction in the meniscus region and negligible
surface forces, �(h)™PC

We start this section with the simplest possible case, in
which both the surface forces and the friction in the meniscus
region are negligible. All calculations were performed with
both models for POSM, Eqs. �7a�, �7b�, and �8�, which gave
very similar numerical results, except for the range of low
volume fractions, �→�CP. To simplify the presentation,
only results obtained by using Eq. �8� for POSM are presented
in the figures below, whereas the final interpolation formulas
for the viscous stress are presented for both models to allow
a direct comparison.

By using the model presented in Sec. II C, we calculated
the geometrical parameters and the viscous stress for a range
of capillary numbers, 10−7�Ca�10−2, and volume fractions
of the dispersed bubbles or drops, 0.80���0.98. The nu-
merical results obtained for the film thickness and radius,
h�t� and RF�t�, and for the viscous stress �V in sheared foam
or emulsion are discussed below.

The calculations show that the dimensionless initial film
thickness �0=h0 /R0 is proportional to Ca1/2, that is,
h0 / �R0Ca1/2� remains almost constant for a fixed value of �
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�see Eq. �27��, and decreases approximately twice while in-
creasing � from 0.80 to 0.98. The ratio h0 / �RNCa1/2��0.8 is
very weakly dependent on both � and Ca. Thus we can
conclude that the initial film thickness h0 scales approxi-
mately as Ca1/2 upon variation of the shear rate, liquid vis-
cosity, and surface tension, and with RN=2	 / PC upon varia-
tion of the bubble size and air volume fraction.

The calculations showed that the dimensionless film ra-
dius �F=RF�t̃� /R0 passes through a well-defined maximum at
l= lm �corresponding to t̃= x̃0�1� in the process of bubble
sliding �see Fig. 4�a��. The height of this maximum increases
with the increase of �, reflecting the more pronounced
bubble deformation. The shape of the curves RF�t̃� /R0 is
weakly dependent on Ca.

The evolution of the scaled dimensionless film thickness
h�t̃� / �R0Ca1/2� is plotted in Fig. 4�b� for Ca=10−4 and differ-
ent volume fractions. One sees that the film thins rapidly
during the initial stage of bubble collision, due to the rela-
tively small initial film radius �cf. Fig. 4�a� and Eq. �24�� and
large initial thickness. During the following period, when the
film radius is relatively large, the film thins much slower and
h�t̃� / �R0Ca1/2� remains almost constant �see the plateau re-
gion around t̃�1 in Fig. 4�b��. During the final stage of
bubble passage, the film radius decreases rapidly and, as a
result, the film thinning accelerates just before the bubble
detachment and film disappearance. The effect of � on the

dimensionless film thickness h�t̃� / �R0Ca1/2� is moderate—
the thickness decreases about twice upon an increase of �
from 0.80 to 0.98, Fig. 4�b�. The numerical calculations
showed also that the scaled film thickness h�t̃� / �R0Ca1/2� is
weakly dependent on Ca �i.e., the dimensional thickness is
proportional to Ca1/2� and that the predominant energy dissi-
pation during the film existence occurs around t̃�1, i.e.,
when the film radius is the largest.

In Fig. 5 we compare the calculated dimensionless film
thickness at maximal film radius �at l= lm, i.e., at t̃= x̃0�1�,
denoted hereafter as �1
h1 /R0, for various capillary num-
bers and air volume fractions. One sees from Fig. 5�a� that
�1 /Ca1/2 depends weakly on Ca, which means that h1
�Ca1/2. Also, the thickness h1 scales with RN

1/2 �viz., PC
1/2�;

see Fig. 5�b�. Note that the latter scaling stems directly from
the Reynolds equation, Eq. �24�, in which the first term con-
taining the initial film thickness h0 is negligible at t̃�1.
Therefore, the scaling of h in the region of predominant en-
ergy dissipation in the film is determined by the second term
in Eq. �24�.

From these numerical results we can conclude that the
variation of � affects the friction mainly by changing the
bubble capillary pressure and film radius, whereas the varia-
tion of Ca affects mostly the relative velocity of bubbles and
the film thickness.

(a)

(b)

FIG. 4. Dimensionless �a� film radius �F=RF�t̃� /R0, and �b� film
thickness h�t̃� / �R0Ca1/2� as functions of dimensionless time t̃
= tu /R0, calculated for Ca=10−4 and different air volume fractions

�. Equation �8� is used for P̃OSM.

(a)

(b)

FIG. 5. �a� Dimensionless film thickness �1 /Ca1/2 as a function
of the capillary number Ca for different air volume fractions; �1 is
defined as ��l= lm�, which corresponds to t̃= x̃0�1; �b� scaled di-
mensionless film thickness h1 / �RNR0Ca�1/2 as a function of Ca.

Equation �8� is used for P̃OSM.
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Numerical results for the dependence of the dimension-

less dissipated energy per film, ẼDF=EDF / �R0
2	ũ1/2�, as a

function of Ca, are shown with symbols in Fig. 6 for five
values of �. One sees that the dimensionless energy is a very
weak function of Ca, which shows that the viscous stress
scales approximately as Ca1/2 �see Eq. �36��. The effect of

bubble volume fraction � on ẼDF is rather significant. We
found that the numerical results in the ranges 0.80��
�0.99 and 10−7�Ca�10−2 could be described very well by
the following empirical functions:

ẼDF � 1.7Ca−0.035/�1 − ��0.5,

POSM from Eqs. �7a� and �7b� , �47a�

ẼDF � 2.45Ca−0.03�� − 0.74�0.1/�1 − ��0.5,

POSM from Eq. �8� . �47b�

Note that both functions exhibit very weak dependence of

ẼDF on Ca and significant dependence on �. The comparison
of the two functions showed that both give very similar nu-
merical results in the range of volume fractions of main in-
terest, 0.80���0.99 �typically within 4%–5% difference�,
and significant deviations between the two expressions are
observed only when approaching �CP�0.74.

Equations �47� were introduced into Eqs. �36� and �37� to
obtain our final model expressions for the contribution of
film friction into the foam viscous stress and effective vis-
cosity,

�̃VF � 0.806Ca0.465�5/6/�1 − ��0.5,

POSM from Eqs. �7a� and �7b�, �48a�

�̃VF � 1.162Ca0.47�5/6�� − 0.74�0.1/�1 − ��0.5,

POSM from Eq. �8�, �48b�

�̃EF � 0.806Ca−0.535�5/6/�1 − ��0.5,

POSM from Eqs. �7a� and �7b�, �49a�

�̃EF � 1.162Ca−0.53�5/6�� − 0.74�0.1/�1 − ��0.5,

POSM from Eq. �8� �all at a negligible

contribution of ��h�� . �49b�

Note that Eqs. �47�–�49� should be used in their range of
validity only. The extrapolation to �→1 is not justified be-
cause the films become very thin at high volume fractions
�due to the high capillary pressure of bubbles� and the sur-
face forces, which were neglected in these calculations, be-
come important in the normal force balance, Eq. �20�. There-
fore, the upper limit of using these equations is determined
by the comparison of the thickness of dynamic films between
the sliding bubbles h�t�, with the extent of surface forces—
typically between 1 and 10 nm, depending on the specific
surfactants and electrolytes used �see Sec. IV B below�.

One can estimate whether the surface forces should be
considered by invoking the fact that in the absence of surface
forces h�t̃�1��0.2R0Ca1/2—see Fig. 4�b�. Thus, for Ca
�10−4, one estimates h�2�10−3R0, which corresponds to
h�2 �m for bubbles with R0�1 mm and to h�2 nm for
drops with R0�1 �m. We see that the contribution of the
surface forces should be typically negligible in foams, and
could be rather important in emulsions, due to the small size
of the drops and the resulting thinner films in emulsions. The
effect of surface forces on the viscous stress is illustrated
with numerical results in the following Sec. IV B.

The lower boundary of �, above which our model is still
acceptable, is determined mainly by the model assumption
that the bubbles form planar films while sliding along each
other. It is difficult to assess theoretically around which vol-
ume fraction this assumption would fail, because even for
��0.74 the bubbles deform while passing along each other
in sheared foam, due to geometrical constraints and hydro-
dynamic interactions. The comparison of model predictions
with available experimental data, performed in Sec. V below,
shows that Eqs. �47� and �48� describe satisfactorily the data
at least in the range of volume fractions 0.80���0.98.

B. Effect of surface forces on film thickness
and on viscous stress

As explained in the preceding section, the disjoining pres-
sure ��h� could be important for the studied phenomena, if
the thickness of the dynamic films formed between the slid-
ing drops or bubbles in sheared emulsion or foam is compa-
rable to the extent of surface forces. Since this is more typi-
cal for emulsions, the estimates and their explanations in the
current section are presented for drops in sheared emulsions.
The same formulas could be applied to sheared foams, after
selecting appropriate values for the governing parameters.

To illustrate the main effects of surface forces, we use the
Derjaguin-Landau-Verwey-Overbeek �DLVO� expression for
��h�, which accounts for the van der Waals and electrostatic
interactions between the drop surfaces �59,60� as follows:

FIG. 6. Dimensionless energy dissipated in one film, ẼDF

=EDF / �R0
2	ũ1/2�, as a function of the capillary number Ca for dif-

ferent air volume fractions �. The symbols are numerical results,
whereas the curves show the empirical interpolation, Eq. �48b�.
Equation �8� is used for P̃OSM.
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��h� = −
AH

6�h3 + 64n0kBT�tanh
e�S

4kBT
�2

exp�− �h� .

�50�

As usual, AH denotes the Hamaker constant, n0 is electrolyte
number concentration, kBT is thermal energy, e is the el-
ementary charge, �S is the electrical surface potential of the
drops, and � is the inverse Debye screening length.

As seen from Eqs. �20�–�23�, �29�, and �30�, the surface
forces become important for the processes of film formation
and thinning, and for the viscous friction, when the dimen-

sionless disjoining pressure �̃
��h� / PC becomes compa-
rable to unity. Furthermore, as seen from Eq. �21�, the film

thinning stops at �̃=1, because the latter condition corre-
sponds to films with equilibrium thickness hEQ. In such films,
the capillary pressure driving the film thinning is exactly
counterbalanced by the repulsive disjoining pressure.

To illustrate the importance of this effect, in Fig. 7 we plot
the dimensionless film thickness h�t̃� / �R0Ca1/2� as a function
of the dimensionless time t̃, for emulsion drops with different
radii at all other fixed parameters. One sees that for these
particular parameters, the dimensionless thickness for the big
drops with R0=100 �m follows the curves shown in Fig.
4�b� for systems with negligible ��h�, whereas the dimen-
sionless thickness is significantly larger for the smaller drops
with R0=10 and 1 �m. The reason is that for these smaller
drops, the thickness of the dynamic films becomes compa-
rable to the range of electrostatic repulsion, and the dynamic
films acquire their equilibrium thickness hEQ during most of
the film existence period �note that the actual dimensional
film thickness is smaller for the smaller drops�.

According to Eq. �50�, for given material properties of the
drops �viz., given values of AH and �S�, the contribution of
��h� on the viscous friction depends on electrolyte concen-
tration �which controls electrostatic repulsion� and on the
surface tension and drop radius �which determine PC�. To
illustrate the effect of these factors on the viscous friction in
sheared emulsions, we present first the scaled dimensionless

film thickness at l= lm, h1 / �RNR0Ca�1/2, as a function of Ca,
at different electrolyte concentrations and radii of the drops.
As seen from the results shown in Figs. 8�a� and 8�b�, when
electrostatic forces are significant, h1 / �RNR0Ca�1/2 decreases
with the increase of Ca �at given R0 and CEL� and/or with the
increase of R0 and CEL �at given Ca�. In fact, in all these
cases the dimensional thickness remains constant, h1�hEQ,
while varying Ca, and as a result, the dimensionless film
thickness h1 / �RNR0Ca�1/2�Ca−1/2.

One sees from Eq. �35� that the second term on the right-
hand side is zero, when h=hEQ=const during the process of
bubble sliding. In this case, the first term could be integrated
to derive the following expression for the dissipated energy
in the film and for the viscous stress:

− ẼDF =
�ũ1/2l̃m

2

�EQ
� R̃eff

2

l̃m

�arctan
t̃c − x̃0

l̃m

+ arctan
x̃0

l̃m

� −
t̃c

4�,

�51�
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�l̃m

2

�EQ
� R̃eff

2

l̃m
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t̃c − x̃0

l̃m

+ arctan
x̃0

l̃m

� −
t̃c

4�
� C���

Ca

�EQ
, �52�

where the dimensionless quantities introduced before Eq.
�35� are used. Equation �52� predicts a linear increase of the
viscous stress with shear rate �see Figs. 8�c� and 8�d��. The
numerical multiplier C��� in Eq. �52� varies from 0.4 at �
=0.80 to 0.9 at �=0.98. The value of �EQ=hEQ /R0 entering
these expressions is determined by the balance ��hEQ�
= PC���, which in turn is governed by the material param-
eters of the system, such as electrolyte concentration, surface
potential, and Hamaker constant.

At fixed material parameters, a threshold value of the cap-
illary number exists, CaTR, above which the contribution of
��h� becomes negligible, because the films become thicker
than the extent of surface forces �see Fig. 8�. From the data
shown in Fig. 8 one sees that the threshold capillary number
for electrostatic interactions could be estimated by the rela-
tion

CaTR �
2 � 10−3

R0
	CEL

, �53�

where CEL is the electrolyte concentration in mmol /dm3 and
R0 is the initial drop radius in micrometers. Therefore, for
electrostatically stabilized emulsions, CaTR depends exclu-
sively on the initial drop radius and electrolyte concentration
�provided that the surface potential is not too small, �S
�25 mV�. Analysis of a similar type could be performed for
emulsions and foams stabilized by other types of forces, such
as steric repulsion, oscillatory structural forces, etc., once the
functional dependence ��h� is defined �55�.

Thus we see that the viscous stress is a linear function of
the capillary number �viz., of shear rate� for emulsions, in
which the films are stabilized by repulsive forces and h
�hEQ. At higher capillary numbers, the dynamic films may
become thicker than the range of surface forces and the vis-

FIG. 7. Dimensionless film thickness as a function of dimen-
sionless time t̃= tu /R0 for emulsions with different drop radii R0.
The other parameters used for the calculations are AH=4
�10−21 J, �S=100 mV, 	=5 mN /m, T=298 K, CEL=1 mM,

Ca=10−4, and �=0.9. Equation �8� is used for P̃OSM.
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cous stress becomes proportional to Ca1/2 see �Figs. 8�c� and
8�d��. In other words, the model predicts power-law index
n=1 at low shear rates in such systems, with a possible tran-
sition to n=1 /2 at higher shear rates. On the other hand, for
systems exhibiting shear thinning of the continuous fluid
phase �i.e., � decreasing with �̇�, one should expect lower
values of the power-law index, n�1 /2, because the viscous
friction inside the films would be lower at high shear rate �as
compared to the prediction of the current model�. Conceptu-
ally, the effect of shear thinning, ���̇�, could be incorporated
in the current model, but this task is not trivial �e.g., the local
viscosity in the films could be different from the viscosity of
the bulk liquid, if polymers are adsorbed on the film sur-
faces�, requires additional analysis, and is therefore post-
poned for a separate study.

Concluding this section we note that our model could ex-
plain power-law indexes from n=1 �films with equilibrium
thickness�, through n=1 /2 �dynamic films containing New-
tonian liquid�, down to n�1 /2 �dynamic films containing a
shear-thinning liquid�. Another possible reason for obtaining
power-law index n�1 /2 is described in Sec. VI below.
However, only in the case of n=1 /2, the viscous stress de-
pends on well-defined parameters ��, R0, and Ca�, which are
usually known in the rheological measurements. In the other
cases, the viscous stress depends on additional parameters
which are usually unknown—e.g., the functions ��h� and
���̇�. For this reason, and to avoid the necessity of using

unknown parameters when comparing the model with ex-
perimental results, we focus the consideration in the follow-
ing Secs. IV C and V mostly on systems with n�1 /2.

C. Effect of viscous dissipation inside the meniscus region

The effect of viscous friction inside the meniscus region
around the films could be estimated as explained in Sec. III.
In the current section we compare numerical results for the
viscous stress, with and without included friction in the me-
niscus region, to assess the importance of this effect.

In Fig. 9 we show numerical results for the dimensionless
viscous stress, calculated in the range of capillary numbers
10−7�Ca�10−2, at two air volume fractions, �=0.80 and
�=0.98. One sees that the contribution of the friction in the
meniscus region is relatively small at low capillary numbers
Ca�10−4, and at high volume fractions. The effect of the
meniscus region is very significant only at high capillary
numbers Ca�10−3, and volume fractions ��0.95 �data not
shown in Fig. 9�.

Interestingly, we found that the calculated film thickness
h�t� is noticeably larger when the friction in the meniscus
region is taken into account. However, at low capillary num-
bers, the reduced friction in the film �caused by the increased
film thickness� is compensated well by the additional contri-
bution to the friction coming from the meniscus region—as a
result, the total friction stress is almost the same with and

(a) (b)

(c) (d)

FIG. 8. �a�,�b� Dimensionless film thickness h1 / �RNR0Ca�1/2, and �c�,�d� dimensionless viscous stress �̃VF=� / �	 /R0�, as functions of the
capillary number Ca. �a�,�c� Different electrolyte concentrations. �b�,�d� Different drop sizes. The parameters used in the calculations are
typical for emulsions stabilized by ionic surfactants: AH=4�10−21 J, �S=100 mV, 	=5 mN /m, T=298 K, and �=0.9. Equation �8� is

used for P̃OSM.
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without account for the meniscus region. In contrast, at high
capillary numbers and low �, the additional friction in the
meniscus region is in excess �compared to the reduced fric-
tion in the films� and the total viscous stress is higher when
taking into account the meniscus region, Fig. 9.

A semiempirical formula, appropriate for estimates, was
designed by considering the total viscous stress as a super-
position of the friction in foam films with the friction in the
meniscus region as follows:

�̃V � 0.7Ca0.47�5/6/�1 − ��0.5 + 8Ca0.7�5/6/�1 − ��0.15,

POSM from Eq. �8�, �54�

�̃EF � 0.5Ca−0.535�5/6/�1 − ��0.5 + 6.2Ca−0.3�5/6/�1 − ��0.2

�at a negligible contribution of ��h�� . �55�

The first term accounts for the friction inside the film,
whereas the second term is due to the friction inside the
meniscus region. At low values of Ca and/or high values of
� the first term dominates �i.e., the prevailing friction is in
the film�, whereas at high Ca and low � the friction in the
meniscus could dominate.

V. COMPARISON OF MODEL PREDICTIONS
WITH EXPERIMENTAL DATA

Let us compare first the model predictions with the ex-
perimental data of Princen and Kiss �4�, who measured the
viscous stress �V�Ca� of concentrated paraffin oil-in-water
emulsions with different oil volume fractions and relatively
large mean drop size. The paraffin oil used in these emul-
sions was of viscosity �D=49 mPa s, i.e., �D /�C�1. Since
the emulsions in these experiments are polydisperse, the
comparison is made by using the mean volume-surface ra-
dius R32, as analog to drop radius R0 in our model. The
comparison showed a reasonably good agreement of Eq. �54�
with all experimental data from Ref. �4�, without using any
adjustable parameter. As an illustration, we show in Fig.
10�a� the theoretical curves and the experimental data from
Ref. �4� for two of the used emulsions with volume fractions

�=0.83 and �=0.96. One sees a very good description of
the data by the model. For the other volume fractions and
mean drop sizes studied in �4� the agreement is also reason-
ably good—no difference larger than 15% was found for the
entire set of data �the agreement was within 10% for most of
the experimental data�.

Very good agreement was found also between model pre-
dictions and our own experimental data �especially when us-
ing the model accounting for film friction only, Eq. �48a� and
�48b��, obtained with hexadecane-in-water emulsions with
�=0.90, stabilized by the nonionic surfactant tridecylether-
polyoxyethylene-8 �C13EO8�, Fig. 10�b�. The viscosity of
hexadecane is �D�3 mPa s.

Next, we compare model predictions with experimental
results for sheared foams with �=0.90. The comparison for
foams with n�1 /2, which were prepared by mixed solutions
containing 0.33 wt % anionic surfactant sodium
dodecylpolyoxyethylene-3-sulfate �SLES� and 0.17 wt %
zwitterionic surfactant cocoamidopropyl betaine �CAPB�
�38�, showed also very good agreement without adjustable
parameters �see Fig. 11�, especially when using the model
accounting for the film friction only, Eq. �48�. The model
accounting for the friction in the meniscus region, Eq. �54�,
predicted higher viscous stress than the experimental data at
Ca�10−4. This comparison indicates that the surface of the

FIG. 9. Dimensionless viscous stress vs capillary number. Solid
curves—with account for the viscous friction in the meniscus re-
gion; dashed curves—with account for the friction in the films only.

Equation �8� is used for P̃OSM.

(a)

(b)

FIG. 10. Comparison of model predictions with experimental
results �symbols� for oil-in-water emulsions: �a� Data from Ref. �4�
for �=0.83 and 0.96. �b� Our results obtained by parallel-plates
rheometry, by using the method described in Ref. �26�. The solid
curves in �a� and �b� are drawn according to Eq. �54�, whereas the
dashed curve in �b� is drawn with account for the dissipation in the
film region only �all curves—without adjustable parameter�.
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bubbles in the meniscus region might be tangentially mobile
�at least partially� and the dissipation inside the meniscus
region is negligible, as compared to the friction in the films,
for these foams.

Note that for foams, tangential stress on the bubble sur-
face is created only by perturbations of the surfactant adsorp-
tion layer �Marangoni effect�. In the thicker meniscus region,
the gradient of fluid velocity is smaller �compared to that in
films� and might be insufficient to create large gradients of
surface tension, which could keep the surfaces �almost� im-
mobile with respect to liquid flow. In contrast, tangential
stress on the drop surface in emulsions could be created by
high viscosity of the drop phase as well, thus maintaining
tangentially immobile surfaces of both films and meniscus
regions. The comparison of model predictions with experi-
mental data for foams and emulsions, shown in Figs. 10 and
11, indicates that the surfaces of the meniscus regions are
probably mobile in foams �due to insufficiently strong Ma-
rangoni effect� and immobile in emulsions of viscous drops
with �D /�C�1 �due to high viscosity ratio, which damps
the liquid motion inside the drops�. For the hexadecane-in-
water emulsions shown in Fig. 10�b�, �D /�C�3, and this
moderate viscosity ratio explains why the model accounting
only for the film friction describes better the experimental
data—the surfaces in the meniscus regions are partially mo-
bile in this system.

Thus, we can conclude from the comparisons shown in
Figs. 10 and 11 that our model describes well the experimen-
tal results for emulsions and foams, which exhibit a flow
index n�1 /2. The comparison of the theoretical viscous
stress with the experimental data presented in Refs. �26,38�,
showed that the foams stabilized by another type of surfac-
tant �salts of fatty acids� exhibit n�1 /2 and much higher
viscous stress in comparison with SLES+CAPB stabilized
foams. Obviously, the model described above cannot explain
such higher stresses. One specific feature of fatty acid-based
surfactants is their very high surface dilatational modulus,
GS�100 mN /m, in comparison with �5 mN /m for
SLES+CAPB mixtures �26,38�. Because the surface modu-
lus GS contains a significant loss �viscous� component GLS,

one can suggest that the viscous dissipation of energy at the
surface of the bubbles �which perform a series of small ex-
pansions and contractions around the average surface area in
sheared foam� should be taken into account when describing
the fatty acid-stabilized foams. Therefore, the effect of sur-
face dissipation of energy is considered in the following Sec.
VI.

VI. SURFACE DISSIPATION OF ENERGY
IN SHEARED FOAMS

In this section we show that the higher viscous stress,
observed with foams stabilized by salts of fatty acids �26,38�,
can be explained by the high surface viscosity of these sys-
tems. To estimate approximately the effect of surface dilata-
tional viscosity on the foam viscous stress �V��̇�, we repre-
sent the consecutive expansions or contractions of the bubble
surface in flowing foam with oscillatory-type of deforma-
tions of amplitude �S and angular frequency � as follows:

S�t� = S0 + �S cos��t� . �56�

Next, we estimate the contribution of the surface dissipation
of energy to the total density of energy dissipation in the
foam. Following a standard procedure �64�, we integrated the
energy dissipation rate per unit area of the bubble surface,
dEDS /dt=GLS���S /S0�2 sin2 �t, over one oscillatory cycle
of the bubble area expansion or contraction, T=2� /�, and
obtained the following expression for the energy dissipated
at the surface of one bubble, upon formation and disappear-
ance of one foam film:

EDS = �GLSS0�� ln S�2. �57�

Here, � ln S
�S /S0 denotes the relative amplitude of the
bubble area deformation, as a result of the film formation
between two sliding bubbles, and GLS is the surface dilata-
tional loss �viscous� modulus.

Following the same reasoning as in the derivation of Eq.
�34�, we calculate the time-averaged rate of energy dissipa-

tion per unit foam volume �ĖDS�, which is equal to the prod-
uct of the respective macroscopic viscous stress �VS, multi-
plied by �̇, which leads to the following expression:

�VS = �ĖDS�/�̇ = 4EDS�/�tCVB�̇�

= 12�GLS�m�� ln S�2/�R0lS� . �58�

The multiplier 4 in Eq. �58� stands for the number of film
formation-disappearance cycles, upon one elementary step
with length lS of the moving neighboring planes of bubbles
�see the discussion after Eq. �34��. Taking into account that
m / lS�0.82, we derive the following final expression for the
dimensionless stress and effective viscosity:

�̃VS 
 �VSR0/	 � 9.8��GLS/	���� ln S�2, �59�

�̃EF 
 �EF/� � 9.8��GLS/	���� ln S�2Ca−1. �60�

Note that the dependence of �VS on �̇ appears only through
the possible dependences of GLS and � ln S on �̇. Note also
that the same theoretical approach could be directly applied

FIG. 11. Comparison of the theoretical predictions with experi-
mental data for foams formed from surfactant solutions with differ-
ent surface loss modulus GLS �see Sec. VI�. The symbols are ex-
perimental data; the dashed curve is drawn according to Eq. �38�
�friction only in the foam films, no adjustable parameter�.
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to describe surface dissipation in foams and concentrated
emulsions, subject to oscillatory deformation �e.g., of shear
or extensional type�.

To check properly these theoretical predictions, we mea-
sured the foam viscous stress and the surface rheological
properties for several surfactant systems, particularly chosen
to cover a wide range of surface viscosities �38�. Foam vis-
cous stress �V��̇� was determined by parallel-plates rheom-
etry for shear rates between 0.1 and 150 s−1, as explained in
Refs. �26,38�. Surface rheological properties of the foaming
solutions were characterized by the oscillating drop method
�ODM� in the frequency range �=0.05−0.5 Hz and at rela-
tive amplitude of the area oscillations between 0.2 and 1.5%.

The reference surfactant system was a mixture of 0.33
wt % anionic surfactant SLES and 0.17 wt % zwitterionic
surfactant CAPB, exhibiting rather low surface dilatational
modulus GLS�3 mN /m. Therefore, this reference solution
is representative for the typical foaming solutions of syn-
thetic surfactants with low surface modulus. As explained in
Ref. �38�, the addition of 0.02 wt % of lauric acid �LAc� or
myristic acid �MAc� to this reference solution leads to a sig-
nificant increase of surface loss modulus GLS, whose value
depends on both frequency and amplitude of oscillations. As
an illustration, we show in Fig. 12�a� the scaled loss modulus
GLS /	 for these two solutions, as a function of the amplitude
of area oscillations �S /S0
� ln S in %, at frequency �
=0.2 Hz. The high surface modulus measured with MAc-
and LAc-containing solutions was explained in �38� with the
formation of a two-dimensional crystal of MAc or LAc mol-
ecules in the surfactant monolayer, adsorbed on solution
surface.

The viscous stresses, measured with foams generated
from the same three surfactant solutions ��=0.9�, are com-
pared in Fig. 11. The experimental data for the reference
solution, SLES+CAPB, are very well described by Eq. �48�,
which accounts for the viscous friction in the foam films and
predicts power-law index n�0.47. In contrast, the experi-
mental data for the other two systems, containing LAc or
MAc, correspond to n�0.23 and lay much higher than the
predictions of Eq. �48� or �54�. To check whether the surface
dissipation of energy could explain this “extra” viscous
stress, we subtracted the calculated stress related to friction
in the film and meniscus regions ��VF+�VM� �see Eq. �54��,
from the total measured viscous stress, �V. The remaining
stress is certainly related to the specific surface properties of
LAc- and MAc-containing systems and is, therefore, denoted
by �VS.

By assuming that the prevailing contribution into �VS
comes from the surface dissipation of energy �other possibili-
ties are mentioned at the end of this section�, we normalized
�VS in accordance with Eq. �59� and plotted in Fig. 12�b� the
dependence �GEFF /	��� ln S�2, calculated from the foam rhe-
ology data, on the foam shear rate, �̇. Here GEFF denotes the
effective surface loss modulus, determined from �VS �for
convenience, � ln S is expressed in % throughout the follow-
ing discussion�. One sees from Fig. 12�b� that
�GEFF /	��� ln S�2 increases with the shear rate up to 10 s−1

and then decreases. This nonhomogeneous dependence is in
qualitative agreement with our measurements of the surface
rheological properties of MAc- and LAc-containing systems,

which showed a sharp decrease of the surface modulus at
high frequencies and amplitudes of oscillations, probably
due to the destruction of the crystalline adsorption layer un-
der these conditions �38�. Unfortunately, for technical rea-
sons we could not measure the surface rheological properties
by ODM at frequency of oscillations �0.5 Hz. Therefore,
we could not make a direct comparison of the surface rheo-
logical properties with bulk foam rheological properties at
high frequencies. Thus we restrict our further analysis to the
region of low shear rates, �̇�1 s−1.

In this low-rate region we can describe well the experi-
mental data in Fig. 12�b� by the empirical fit
�GEFF /	��� ln S�2=A�̇0.18, where A�12.6 for LAc-
containing foams, A�21.2 for MAc-containing foams, and �̇
is expressed in s−1 �see the dashed lines in Fig. 12�b��. Be-
cause the values of 	 are practically equal and the values of
� ln S are expected to be similar for the LAc- and MAc-
containing systems, the higher stress observed with the
MAc-containing system in Fig. 12�b� reflects higher values

(b)

(a)

FIG. 12. �a� Comparison of the surface loss modulus GLS, mea-
sured by oscillating drop method �the symbols and the solid lines,
which are drawn to guide the eye� with the effective modulus GEFF,
determined from the foam viscous stress �dashed curves�. From the
cross points one can determine the effective bubble deformation in
the sheared foam �S /S0, which provides agreement between the
calculated and the measured foam viscous stress, generated by the
surface dissipation of energy, �VS. �b� Effective surface loss modu-
lus GEFF, determined from the foam viscous stress, after subtracting
the contribution from the friction in the foam films and meniscus
region �see Eq. �59��. The lines are linear interpolations in the re-
gion of low shear rates, �̇�1 s−1.
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of GEFF, which is in qualitative agreement with the data ob-
tained by the ODM method �cf. Fig. 12�a��.

Next, to compare quantitatively the results from the ODM
experiments with the results from foam rheological measure-
ments, we assume that �1� the frequency of oscillations in the
ODM experiments corresponds approximately to the fre-
quency of collisions between the bubbles, �=� /2�� �̇, and
�2� GLS from the ODM experiments should be equal to GEFF
from the foam experiments. From the crossing points of the
curves drawn in Fig. 12�a�, corresponding to GLS���
=GEFF��̇�, we could estimate approximately the amplitude
�S /S0, at which the results from the foam rheometry agree
with the results from the surface characterization of the
foaming solutions. One sees from Fig. 12�a� that such agree-
ment is obtained at �S /S0�1.5�0.1% for LAc-containing
solutions and �S /S0�1.1�0.1% for MAc-containing solu-
tions. Very similar values for �S /S0 were determined at the
other frequencies studied, which shows that the main depen-
dence of the product GEFF � ln S on the shear rate comes
from GEFF. This conclusion is supported by the ODM mea-
surements, which showed a significant increase of GLS with
the frequency of oscillations.

The estimated amplitude of the average surface deforma-
tion of bubbles in sheared foams, �S /S0�1% �at �=0.90�,
seem rather reasonable, taking into account the various ap-
proximations used in the model development, and the esti-
mate showing that the formation of a single film with radius
RF�lm� on the surface of an initially spherical bubble would
correspond to �S /S0�0.55%. Note that the actual bubble
shape in sheared foams is rather complex and the surface
oscillations created by the formation of several films on the
bubble surface could interfere with each other, thus affecting
the average value of �S /S0.

Let us note at the end of this section that one could en-
visage additional possible sources of dissipated energy in the
sheared foams or emulsions which were neglected so far. For
example, at high surface elastic modulus, one could expect
that the bubbles would be forced to rotate under the action of
the torque, created by the bubbles in the neighboring �upper
and lower� moving planes. Such a bubble rotation would
lead to viscous friction and to respective energy dissipation
inside the films formed with the neighboring bubbles in the
same plane—an effect, which has been neglected in the
model. It is difficult to quantify this contribution in the vis-
cous stress, because the rotation speed of the bubbles, as well
as the thickness of the films between the bubbles arranged
inside a given plane are unknown. Another contribution
could come from the migrations of bubbles between neigh-
boring planes. Such a process would lead to additional dis-
sipation of energy in the films between the migrating bubble
and its neighbors. Without having experimental information
about the frequency of such migration events, one cannot
evaluate the importance of this process. Therefore, the de-
tailed consideration of these additional contributions is post-
poned for subsequent studies.

VII. CONCLUSIONS

In this paper we explain in more detail and extend further
our model from Ref. �37� for the viscous friction in steadily

sheared foams and concentrated emulsions. Along with the
viscous friction inside the foam or emulsion films, formed
between the neighboring bubbles and drops �37�, three addi-
tional effects are considered here: �1� surface forces acting
between the film surfaces, �2� energy dissipation on the
bubble or drop surface due to the perpetual bubble or drop
deformation in the sheared foams or emulsions, and �3� fric-
tion in the meniscus region around the planar films. The
main conclusions from our study could be summarized as
follows:

�1� At negligible surface dissipation and surface forces,
the viscous stress is approximately proportional to the capil-
lary number of power n�1 /2, i.e., �V�Ca1/2 �see Eqs. �48��.
This prediction is compared with several sets of experimen-
tal data, obtained with emulsions and foams by different re-
search groups, and very good agreement is observed without
adjustable parameters, Figs. 10 and 11.

�2� Surface forces are usually insignificant for steadily
sheared foams �except for micrometer-sized bubbles and/or
at very low shear rates�, because the dynamic films in these
systems are typically thicker than the range of surface forces.
In contrast, for micrometer-sized drops and bubbles, the sur-
face forces could be important, because their range becomes
comparable to the dynamic film thickness. If the films be-
tween the sliding drops or bubbles rapidly acquire their equi-
librium film thickness hEQ, determined by the balance of the
capillary and disjoining pressures PC=��hEQ�, the power-
law index n→1 �see Fig. 8�.

�3� Surface dissipation is important for systems with high
surface loss �viscous� modulus GLS�20 mN /m. In these
systems, the power-law index n�1 /2, because the surface
dissipation is a weak function of the capillary number �see
Eq. �59� and Fig. 11�.

�4� Friction in the meniscus region around the films be-
comes significant only at both high capillary number, ca.
Ca�10−4, and low air volume fraction, Fig. 9. The resulting
additional viscous stress could be described by interpolation
formula, Eq. �54�.

Summarizing, our model predicts power-law indexes n
�1 for dynamic films having equilibrium thickness n�1 /2
for dynamic films whose thickness is described by the Rey-
nolds equation �in both cases at negligible surface dissipation
and for films containing Newtonian liquid�, and n�1 /2 for
significant surface dissipation and/or dynamic films contain-
ing a shear-thinning liquid. Therefore, a wide range of
power-law indexes n is predicted, depending on the system
characteristics, in agreement with the experimental results
published in literature.

Note that our numerical calculations demonstrate that one
should not expect an ideal “exact” value of the power-law
index, as predicted by simple scaling arguments, due to �1�
weak but still detectable dependence of the dimensionless
quantities �such as dimensionless film thickness and dissi-
pated energy in the films� on capillary number, and �2� a
possible comparable contribution of several dissipation
mechanisms, each of them characterized by a different index
�e.g., dissipation in the films and surface dissipation�.

We note also that the different expressions for the osmotic
pressure of emulsions and foams, Eqs. �7� and �8�, corre-
sponding to polydisperse and monodisperse systems, respec-
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tively, give very similar numerical results when used to cal-
culate the viscous stress in such systems. From a practical
viewpoint, most convenient is Eq. �8�, because it is simple,
sufficiently accurate, and applicable in a wide range of vol-
ume fractions.

The model described in the current paper has two impor-
tant extensions, which are currently under development.
First, it can be applied to two-dimensional �2D� foams, after
straightforward modification to account for the different
bubble arrangement and for the possible foam-wall friction,
which is typical for many rheological studies of 2D foams
�14,15,23,24,65–68�. The respective calculations are in
progress and will be published in a subsequent paper �69�.
Second, the foam and emulsion films are known to undergo a
spontaneous jump to smaller thickness, under the action of
attractive surface forces �such as the van der Waals and
depletion forces�, at a certain critical film thickness hCR,
which is typically between 5 and 30 nm �52,54,58,70,71�.
The ultrathin films, formed after such a jump, lead to strong
adhesion between the drops or bubbles confining these films.

Therefore, the foam and emulsion jamming observed at low
shear rates �20,22–25�, might be intimately related to the
spontaneous jump in film thickness at hCR. Our preliminary
estimates showed that the time required for film thinning
down to hCR, might be comparable to the contact time of the
bubbles or drops in sheared foams and emulsions, thus sug-
gesting that the jamming phenomenon in these systems could
be governed by the rate of film thinning, Eq. �21�. This hy-
pothesis is under investigation and the results from the quan-
titative comparison of the model predictions with experimen-
tal results will be presented in a subsequent study �72�.
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